Back to Search Start Over

Repeated Bilateral Trade Against a Smoothed Adversary

Authors :
Cesa-Bianchi, Nicolò
Cesari, Tommaso
Colomboni, Roberto
Fusco, Federico
Leonardi, Stefano
Source :
Proceedings of Thirty Sixth Conference on Learning Theory, PMLR 195:1095-1130, 2023
Publication Year :
2023

Abstract

We study repeated bilateral trade where an adaptive $\sigma$-smooth adversary generates the valuations of sellers and buyers. We provide a complete characterization of the regret regimes for fixed-price mechanisms under different feedback models in the two cases where the learner can post either the same or different prices to buyers and sellers. We begin by showing that the minimax regret after $T$ rounds is of order $\sqrt{T}$ in the full-feedback scenario. Under partial feedback, any algorithm that has to post the same price to buyers and sellers suffers worst-case linear regret. However, when the learner can post two different prices at each round, we design an algorithm enjoying regret of order $T^{3/4}$ ignoring log factors. We prove that this rate is optimal by presenting a surprising $T^{3/4}$ lower bound, which is the main technical contribution of the paper.

Details

Database :
arXiv
Journal :
Proceedings of Thirty Sixth Conference on Learning Theory, PMLR 195:1095-1130, 2023
Publication Type :
Report
Accession number :
edsarx.2302.10805
Document Type :
Working Paper