Back to Search Start Over

Combined electronic excitation and knock-on damage in monolayer MoS2

Authors :
Speckmann, Carsten
Lang, Julia
Madsen, Jacob
Monazam, Mohammad Reza Ahmadpour
Zagler, Georg
Leuthner, Gregor T.
McEvoy, Niall
Mangler, Clemens
Susi, Toma
Kotakoski, Jani
Publication Year :
2023

Abstract

Electron irradiation-induced damage is often the limiting factor in imaging materials prone to ionization or electronic excitations due to inelastic electron scattering. Quantifying the related processes at the atomic scale has only become possible with the advent of aberration-corrected (scanning) transmission electron microscopes and two-dimensional materials that allow imaging each lattice atom. While it has been shown for graphene that pure knock-on damage arising from elastic scattering is sufficient to describe the observed damage, the situation is more complicated with two-dimensional semiconducting materials such as MoS2. Here, we measure the displacement cross section for sulfur atoms in MoS2 with primary beam energies between 55 and 90 keV, and correlate the results with existing measurements and theoretical models. Our experimental data suggests that the displacement process can occur from the ground state, or with single or multiple excitations, all caused by the same impinging electron. The results bring light to reports in the recent literature, and add necessary experimental data for a comprehensive description of electron irradiation damage in a two-dimensional semiconducting material. Specifically, the results agree with a combined inelastic and elastic damage mechanism at intermediate energies, in addition to a pure elastic mechanism that dominates above 80 keV. When the inelastic contribution is assumed to arise through impact ionization, the associated excitation lifetime is on the order of picoseconds, on par with expected excitation lifetimes in MoS2, whereas it drops to some tens of femtoseconds when direct valence excitation is considered.<br />Comment: 19 pages, 4 figures, 1 table

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2302.10529
Document Type :
Working Paper
Full Text :
https://doi.org/10.1103/PhysRevB.107.094112