Back to Search Start Over

Non-pooling Network for medical image segmentation

Authors :
Song, Weihu
Yu, Heng
Publication Year :
2023

Abstract

Existing studies tend tofocus onmodel modifications and integration with higher accuracy, which improve performance but also carry huge computational costs, resulting in longer detection times. Inmedical imaging, the use of time is extremely sensitive. And at present most of the semantic segmentation models have encoder-decoder structure or double branch structure. Their several times of the pooling use with high-level semantic information extraction operation cause information loss although there si a reverse pooling or other similar action to restore information loss of pooling operation. In addition, we notice that visual attention mechanism has superior performance on a variety of tasks. Given this, this paper proposes non-pooling network(NPNet), non-pooling commendably reduces the loss of information and attention enhancement m o d u l e ( A M ) effectively increases the weight of useful information. The method greatly reduces the number of parametersand computation costs by the shallow neural network structure. We evaluate the semantic segmentation model of our NPNet on three benchmark datasets comparing w i t h multiple current state-of-the-art(SOTA) models, and the implementation results show thatour NPNetachieves SOTA performance, with an excellent balance between accuracyand speed.<br />Comment: 8 pages, 5 figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2302.10412
Document Type :
Working Paper