Back to Search
Start Over
Compare list-color functions of uniform hypergraphs with their chromatic polynomials (II)
- Publication Year :
- 2023
-
Abstract
- For any $r$-uniform hypergraph $\mathcal{H}$ with $m$ ($\geq 2$) edges, let $P(\mathcal{H},k)$ and $P_l(\mathcal{H},k)$ be the chromatic polynomial and the list-color function of $\mathcal{H}$ respectively, and let $\rho(\mathcal{H})$ denote the minimum value of $|e\setminus e'|$ among all pairs of distinct edges $e,e'$ in $\mathcal{H}$. We will show that if $r\ge3$, $\rho(\mathcal{H})\ge 2$ and $m\ge \frac{\rho(\mathcal{H})^3}2+1$, then $P_l(\mathcal{H},k)=P(\mathcal{H},k)$ holds for all integers $k\geq \frac{2.4(m-1)}{\rho(\mathcal{H})\log(m-1)}$.<br />Comment: 11 pages, 1 figure
- Subjects :
- Mathematics - Combinatorics
05C15, 05C30, 05C31
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2302.05067
- Document Type :
- Working Paper