Back to Search Start Over

Accurate and Interpretable Solution of the Inverse Rig for Realistic Blendshape Models with Quadratic Corrective Terms

Authors :
Racković, Stevo
Soares, Cláudia
Jakovetić, Dušan
Desnica, Zoranka
Publication Year :
2023

Abstract

We propose a new model-based algorithm solving the inverse rig problem in facial animation retargeting, exhibiting higher accuracy of the fit and sparser, more interpretable weight vector compared to SOTA. The proposed method targets a specific subdomain of human face animation - highly-realistic blendshape models used in the production of movies and video games. In this paper, we formulate an optimization problem that takes into account all the requirements of targeted models. Our objective goes beyond a linear blendshape model and employs the quadratic corrective terms necessary for correctly fitting fine details of the mesh. We show that the solution to the proposed problem yields highly accurate mesh reconstruction even when general-purpose solvers, like SQP, are used. The results obtained using SQP are highly accurate in the mesh space but do not exhibit favorable qualities in terms of weight sparsity and smoothness, and for this reason, we further propose a novel algorithm relying on a MM technique. The algorithm is specifically suited for solving the proposed objective, yielding a high-accuracy mesh fit while respecting the constraints and producing a sparse and smooth set of weights easy to manipulate and interpret by artists. Our algorithm is benchmarked with SOTA approaches, and shows an overall superiority of the results, yielding a smooth animation reconstruction with a relative improvement up to 45 percent in root mean squared mesh error while keeping the cardinality comparable with benchmark methods. This paper gives a comprehensive set of evaluation metrics that cover different aspects of the solution, including mesh accuracy, sparsity of the weights, and smoothness of the animation curves, as well as the appearance of the produced animation, which human experts evaluated.

Subjects

Subjects :
Computer Science - Graphics

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2302.04843
Document Type :
Working Paper