Back to Search
Start Over
Quantum Potential Games, Replicator Dynamics, and the Separability Problem
- Publication Year :
- 2023
-
Abstract
- Gamification is an emerging trend in the field of machine learning that presents a novel approach to solving optimization problems by transforming them into game-like scenarios. This paradigm shift allows for the development of robust, easily implementable, and parallelizable algorithms for hard optimization problems. In our work, we use gamification to tackle the Best Separable State (BSS) problem, a fundamental problem in quantum information theory that involves linear optimization over the set of separable quantum states. To achieve this we introduce and study quantum analogues of common-interest games (CIGs) and potential games where players have density matrices as strategies and their interests are perfectly aligned. We bridge the gap between optimization and game theory by establishing the equivalence between KKT (first-order stationary) points of a BSS instance and the Nash equilibria of its corresponding quantum CIG. Taking the perspective of learning in games, we introduce non-commutative extensions of the continuous-time replicator dynamics and the discrete-time Baum-Eagon/linear multiplicative weights update for learning in quantum CIGs, which also serve as decentralized algorithms for the BSS problem. We show that the common utility/objective value of a BSS instance is strictly increasing along trajectories of our algorithms, and finally corroborate our theoretical findings through extensive experiments.
- Subjects :
- Computer Science - Computer Science and Game Theory
Quantum Physics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2302.04789
- Document Type :
- Working Paper