Back to Search Start Over

The Re-Label Method For Data-Centric Machine Learning

Authors :
Guo, Tong
Publication Year :
2023

Abstract

In industry deep learning application, our manually labeled data has a certain number of noisy data. To solve this problem and achieve more than 90 score in dev dataset, we present a simple method to find the noisy data and re-label the noisy data by human, given the model predictions as references in human labeling. In this paper, we illustrate our idea for a broad set of deep learning tasks, includes classification, sequence tagging, object detection, sequence generation, click-through rate prediction. The dev dataset evaluation results and human evaluation results verify our idea.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2302.04391
Document Type :
Working Paper