Back to Search
Start Over
Faithful guiding-center orbits in an axisymmetric magnetic field
- Publication Year :
- 2023
-
Abstract
- The problem of the charged-particle motion in an axisymmetric magnetic geometry is used to assess the validity of higher-order Hamiltonian guiding-center theory, which includes higher-order corrections associated with gyrogauge invariance as well as guiding-center polarization induced by magnetic-field non-uniformity. Two axisymmetric magnetic geometries are considered: a magnetic mirror geometry and a simple tokamak geometry. When a magnetically-confined charged-particle orbit is regular (i.e., its guiding-center magnetic moment is adiabatically invariant), the guiding-center approximation, which conserves both energy and azimuthal canonical angular momentum, is shown to be faithful to the particle orbit when higher-order corrections are taken into account.<br />Comment: 13 pages, 10 figures
- Subjects :
- Physics - Plasma Physics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2302.01166
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1063/5.0145035