Back to Search Start Over

PresSim: An End-to-end Framework for Dynamic Ground Pressure Profile Generation from Monocular Videos Using Physics-based 3D Simulation

Authors :
Ray, Lala Shakti Swarup
Zhou, Bo
Suh, Sungho
Lukowicz, Paul
Source :
2023 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events
Publication Year :
2023

Abstract

Ground pressure exerted by the human body is a valuable source of information for human activity recognition (HAR) in unobtrusive pervasive sensing. While data collection from pressure sensors to develop HAR solutions requires significant resources and effort, we present a novel end-to-end framework, PresSim, to synthesize sensor data from videos of human activities to reduce such effort significantly. PresSim adopts a 3-stage process: first, extract the 3D activity information from videos with computer vision architectures; then simulate the floor mesh deformation profiles based on the 3D activity information and gravity-included physics simulation; lastly, generate the simulated pressure sensor data with deep learning models. We explored two approaches for the 3D activity information: inverse kinematics with mesh re-targeting, and volumetric pose and shape estimation. We validated PresSim with an experimental setup with a monocular camera to provide input and a pressure-sensing fitness mat (80x28 spatial resolution) to provide the sensor ground truth, where nine participants performed a set of predefined yoga sequences.<br />Comment: Percom2023 workshop(UMUM2023)

Details

Database :
arXiv
Journal :
2023 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events
Publication Type :
Report
Accession number :
edsarx.2302.00391
Document Type :
Working Paper
Full Text :
https://doi.org/10.1109/PerComWorkshops56833.2023.10150221