Back to Search
Start Over
Task-Agnostic Graph Neural Network Evaluation via Adversarial Collaboration
- Publication Year :
- 2023
-
Abstract
- It has been increasingly demanding to develop reliable methods to evaluate the progress of Graph Neural Network (GNN) research for molecular representation learning. Existing GNN benchmarking methods for molecular representation learning focus on comparing the GNNs' performances on some node/graph classification/regression tasks on certain datasets. However, there lacks a principled, task-agnostic method to directly compare two GNNs. Additionally, most of the existing self-supervised learning works incorporate handcrafted augmentations to the data, which has several severe difficulties to be applied on graphs due to their unique characteristics. To address the aforementioned issues, we propose GraphAC (Graph Adversarial Collaboration) -- a conceptually novel, principled, task-agnostic, and stable framework for evaluating GNNs through contrastive self-supervision. We introduce a novel objective function: the Competitive Barlow Twins, that allow two GNNs to jointly update themselves from direct competitions against each other. GraphAC succeeds in distinguishing GNNs of different expressiveness across various aspects, and has demonstrated to be a principled and reliable GNN evaluation method, without necessitating any augmentations.<br />Comment: 11th International Conference on Learning Representations (ICLR 2023) Machine Learning for Drug Discovery (MLDD) Workshop. 17 pages, 6 figures, 4 tables
- Subjects :
- Computer Science - Machine Learning
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2301.11517
- Document Type :
- Working Paper