Back to Search
Start Over
Hard X-Ray to Radio Multiwavelength SED Analysis of Local U/LIRGs in GOALS Sample with Self-consistent AGN Model Including Polar-dust Component
- Publication Year :
- 2023
-
Abstract
- We conduct a hard X-ray to radio multiwavelength spectral energy distribution (SED) decomposition for 57 local luminous and ultraluminous infrared galaxies (U/LIRGs) observed with Nuclear Spectroscopic Telescope Array and/or Swift/Burst Alert Telescope in GOALS (Armus et al. 2009) sample. We modify the latest SED-fitting code X-CIGALE by implementing the infrared (IR) CLUMPY model, allowing the multiwavelength study with the X-ray torus model (XCLUMPY) self-consistently. Adopting the torus parameters obtained by the X-ray fitting (Yamada et al. 2021), we estimate the properties of host galaxies, active galactic nucleus (AGN) tori, and polar dust. The star formation rates (SFRs) become larger with merger stage and most of them are above the main sequence. The SFRs are correlated with radio luminosity, indicating starburst emission is dominant in the radio band. Although polar-dust extinction is much smaller than torus extinction, the UV-to-IR (mainly IR) polar dust luminosities are $\sim$2 times larger than the torus ones. The polar-dust temperature decreases while the physical size, estimated by the temperature and dust sublimation radius, increases with AGN luminosity from a few tens of parsec (early mergers) to kiloparsec scales (late mergers), where the polar dust is likely the expanding (i.e., evolving) dusty outflows. The comparison between SFRs and intrinsic AGN luminosities suggests that the starbursts occur first and AGNs arise later, and overall their growth rates follow the simultaneous coevolution relation that can establish the local galaxy-SMBH mass relation. We confirm the coexistence of intense starbursts, AGNs, and large-scale outflows in late mergers, supporting a standard AGN feedback scenario.<br />Comment: 84 pages (5 tables/29 figures in the main text and 8 tables/18 figures in the Appendix), accepted in ApJS
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2301.03613
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.3847/1538-4365/acb349