Back to Search
Start Over
Cohen-Macaulay binomial edge ideals of small graphs
- Publication Year :
- 2022
-
Abstract
- A combinatorial property that characterizes Cohen-Macaulay binomial edge ideals has long been elusive. A recent conjecture ties the Cohen-Macaulayness of a binomial edge ideal $J_G$ to special disconnecting sets of vertices of its underlying graph $G$, called \textit{cut sets}. More precisely, the conjecture states that $J_G$ is Cohen-Macaulay if and only if $J_G$ is unmixed and the collection of the cut sets of $G$ is an accessible set system. In this paper we prove the conjecture theoretically for all graphs with up to $12$ vertices and develop an algorithm that allows to computationally check the conjecture for all graphs with up to $15$ vertices and all blocks with whiskers where the block has at most $11$ vertices. This significantly extends previous computational results.
- Subjects :
- Mathematics - Commutative Algebra
Mathematics - Combinatorics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2212.09181
- Document Type :
- Working Paper