Back to Search Start Over

Minors, connectivity, and diameter in randomly perturbed sparse graphs

Authors :
Aigner-Horev, Elad
Hefetz, Dan
Krivelevich, Michael
Publication Year :
2022

Abstract

Extremal properties of sparse graphs, randomly perturbed by the binomial random graph are considered. It is known that every $n$-vertex graph $G$ contains a complete minor of order $\Omega(n/\alpha(G))$. We prove that adding $\xi n$ random edges, where $\xi > 0$ is arbitrarily small yet fixed, to an $n$-vertex graph $G$ satisfying $\alpha(G) \leq \zeta(\xi)n$ asymptotically almost surely results in a graph containing a complete minor of order $\tilde \Omega \left( n/\sqrt{\alpha(G)}\right)$; this result is tight up to the implicit logarithmic terms. For complete topological minors, we prove that there exists a constant $C>0$ such that adding $C n$ random edges to a graph $G$ satisfying $\delta(G) = \omega(1)$, asymptotically almost surely results in a graph containing a complete topological minor of order $\tilde \Omega(\min\{\delta(G),\sqrt{n}\})$; this result is tight up to the implicit logarithmic terms. Finally, extending results of Bohman, Frieze, Krivelevich, and Martin for the dense case, we analyse the asymptotic behaviour of the vertex-connectivity and the diameter of randomly perturbed sparse graphs.

Subjects

Subjects :
Mathematics - Combinatorics

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2212.07192
Document Type :
Working Paper