Back to Search Start Over

Weak limit of homeomorphisms in $W^{1,n-1}$: invertibility and lower semicontinuity of energy

Authors :
Doležalová, Anna
Hencl, Stanislav
Molchanova, Anastasia
Publication Year :
2022

Abstract

Let $\Omega$, $\Omega'\subset\mathbb{R}^n$ be bounded domains and let $f_m\colon\Omega\to\Omega'$ be a sequence of homeomorphisms with positive Jacobians $J_{f_m} >0$ a.e. and prescribed Dirichlet boundary data. Let all $f_m$ satisfy the Lusin (N) condition and $\sup_m \int_{\Omega}(|Df_m|^{n-1}+A(|\text{cof} Df_m|)+\phi(J_f))<\infty$, where $A$ and $\varphi$ are positive convex functions. Let $f$ be a weak limit of $f_m$ in $W^{1,n-1}$. Provided certain growth behaviour of $A$ and $\varphi$, we show that $f$ satisfies the (INV) condition of Conti and De Lellis, the Lusin (N) condition, and polyconvex energies are lower semicontinuous.

Subjects

Subjects :
Mathematics - Functional Analysis

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2212.06452
Document Type :
Working Paper