Back to Search
Start Over
An overview of maximal distance minimizers problem
- Publication Year :
- 2022
-
Abstract
- Consider a compact $M \subset \mathbb{R}^d$ and $l > 0$. A maximal distance minimizer problem is to find a connected compact set $\Sigma$ of the length (one-dimensional Hausdorff measure $\mathcal H$) at most $l$ that minimizes \[ \max_{y \in M} dist (y, \Sigma), \] where $dist$ stands for the Euclidean distance. We give a survey on the results on the maximal distance minimizers and related problems. Also we fill some natural gaps by showing NP-hardness of the maximal distance minimizing problem, establishing its $\Gamma$-convergence, considering the penalized form and discussing uniqueness of a solution. We finish with open questions.
- Subjects :
- Mathematics - Metric Geometry
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2212.05607
- Document Type :
- Working Paper