Back to Search
Start Over
An Energy-Based Lengthscale for Reduced Order Models of Turbulent Flows
- Publication Year :
- 2022
-
Abstract
- In this paper, we propose a novel reduced order model (ROM) lengthscale that is constructed by using energy distribution arguments. The new energy-based ROM lengthscale is fundamentally different from the current ROM lengthscales, which are built by using dimensional arguments. To assess the novel, energy-based ROM lengthscale, we compare it with a standard, dimensionality-based ROM lengthscale in two fundamentally different types of models: (i) the mixing-length ROM (ML-ROM), which is a ROM closure model; and (ii) the evolve-filter-relax ROM (EFR-ROM), which is a regularized ROM. We test the four combinations (i.e., ML-ROM and EFR-ROM equipped with the energy-based and dimensionality-based lengthscales) in the numerical simulation of the turbulent channel flow at $Re_{\tau} = 395$. The numerical investigation yields the following conclusions: (i) The new energy-based ROM lengthscale is significantly (almost two orders of magnitude) larger than the standard dimensionality-based ROM lengthscale. As a result, the energy-based lengthscale yields more stable ML-ROMs and EFR-ROMs than the dimensionality-based lengthscale. (ii) The energy-based lengthscale displays the correct asymptotic behavior with respect to the ROM dimension, whereas the dimensionality-based lengthscale does not. (iii) The energy-based lengthscale yields ML-ROMs and (when significant filtering is effected) EFR-ROMs whose parameters are less sensitive (i.e., more robust) than the parameters of the ML-ROMs and EFR-ROMs based on the dimensionality-based lengthscale. The novel energy-based lengthscale could enable the development of better scale-aware ROM strategies for flow-specific applications and is expected to have long term applications in nuclear reactor thermal-hydraulics.<br />Comment: arXiv admin note: substantial text overlap with arXiv:2108.02254
- Subjects :
- Mathematics - Numerical Analysis
Physics - Fluid Dynamics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2211.04404
- Document Type :
- Working Paper