Back to Search Start Over

High harmonic generation driven by quantum light

Authors :
Gorlach, Alexey
Tzur, Matan Even
Birk, Michael
Krüger, Michael
Rivera, Nicholas
Cohen, Oren
Kaminer, Ido
Publication Year :
2022

Abstract

High harmonic generation (HHG) is an extreme nonlinear process where intense pulses of light drive matter to emit high harmonics of the driving frequency, reaching the extreme ultraviolet (XUV) and x-ray spectral ranges. So far, the HHG process was always generated by intense laser pulses that are well described as a classical electromagnetic field. Advances in the generation of intense squeezed light motivate us to revisit the fundamentals of HHG and ask how the photon statistics of light may alter this process, and more generally alter the field of extreme nonlinear optics. The role of photon statistics in non-perturbative interactions of intense light with matter has remained unexplored in both experiments and theory. Here we show that the defining spectral characteristics of HHG, such as the plateau and cutoff, are sensitive to the photon statistics of the driving light. While coherent (classical) and Fock light states induce the established HHG cutoff law, thermal and squeezed states substantially surpass it, extending the cutoff compared to classical light of the same intensity. Hence, shaping the photon statistics of light enables producing far higher harmonics in HHG. We develop the theory of extreme nonlinear optics driven by squeezed light, and more generally by arbitrary quantum states of light. Our work introduces quantum optical concepts to strong-field physics as new degrees of freedom in the creation and control of HHG, and finally shows that experiments in this field are feasible. Looking forward, HHG driven by quantum light creates quantum states of XUV and X-rays, enabling applications of quantum optics in new spectral regimes.

Subjects

Subjects :
Physics - Optics
Quantum Physics

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2211.03188
Document Type :
Working Paper