Back to Search
Start Over
Predicting Long-Term Citations from Short-Term Linguistic Influence
- Publication Year :
- 2022
-
Abstract
- A standard measure of the influence of a research paper is the number of times it is cited. However, papers may be cited for many reasons, and citation count offers limited information about the extent to which a paper affected the content of subsequent publications. We therefore propose a novel method to quantify linguistic influence in timestamped document collections. There are two main steps: first, identify lexical and semantic changes using contextual embeddings and word frequencies; second, aggregate information about these changes into per-document influence scores by estimating a high-dimensional Hawkes process with a low-rank parameter matrix. We show that this measure of linguistic influence is predictive of $\textit{future}$ citations: the estimate of linguistic influence from the two years after a paper's publication is correlated with and predictive of its citation count in the following three years. This is demonstrated using an online evaluation with incremental temporal training/test splits, in comparison with a strong baseline that includes predictors for initial citation counts, topics, and lexical features.<br />Comment: 17 pages, 3 figures, to appear in the Findings of EMNLP 2022
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2210.13628
- Document Type :
- Working Paper