Back to Search Start Over

Predicting Long-Term Citations from Short-Term Linguistic Influence

Authors :
Soni, Sandeep
Bamman, David
Eisenstein, Jacob
Publication Year :
2022

Abstract

A standard measure of the influence of a research paper is the number of times it is cited. However, papers may be cited for many reasons, and citation count offers limited information about the extent to which a paper affected the content of subsequent publications. We therefore propose a novel method to quantify linguistic influence in timestamped document collections. There are two main steps: first, identify lexical and semantic changes using contextual embeddings and word frequencies; second, aggregate information about these changes into per-document influence scores by estimating a high-dimensional Hawkes process with a low-rank parameter matrix. We show that this measure of linguistic influence is predictive of $\textit{future}$ citations: the estimate of linguistic influence from the two years after a paper's publication is correlated with and predictive of its citation count in the following three years. This is demonstrated using an online evaluation with incremental temporal training/test splits, in comparison with a strong baseline that includes predictors for initial citation counts, topics, and lexical features.<br />Comment: 17 pages, 3 figures, to appear in the Findings of EMNLP 2022

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2210.13628
Document Type :
Working Paper