Back to Search Start Over

Depersonalized Federated Learning: Tackling Statistical Heterogeneity by Alternating Stochastic Gradient Descent

Authors :
Zhou, Yujie
Li, Zhidu
Tang, Tong
Wang, Ruyan
Publication Year :
2022

Abstract

Federated learning (FL), which has gained increasing attention recently, enables distributed devices to train a common machine learning (ML) model for intelligent inference cooperatively without data sharing. However, problems in practical networks, such as non-independent-and-identically-distributed (non-iid) raw data and limited bandwidth, give rise to slow and unstable convergence of the FL training process. To address these issues, we propose a new FL method that can significantly mitigate statistical heterogeneity through the depersonalization mechanism. Particularly, we decouple the global and local optimization objectives by alternating stochastic gradient descent, thus reducing the accumulated variance in local update phases to accelerate the FL convergence. Then we analyze the proposed method detailedly to show the proposed method converging at a sublinear speed in the general non-convex setting. Finally, numerical results are conducted with experiments on public datasets to verify the effectiveness of our proposed method.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2210.03444
Document Type :
Working Paper