Back to Search
Start Over
An Almost Singularly Optimal Asynchronous Distributed MST Algorithm
- Publication Year :
- 2022
-
Abstract
- A singularly (near) optimal distributed algorithm is one that is (near) optimal in \emph{two} criteria, namely, its time and message complexities. For \emph{synchronous} CONGEST networks, such algorithms are known for fundamental distributed computing problems such as leader election [Kutten et al., JACM 2015] and Minimum Spanning Tree (MST) construction [Pandurangan et al., STOC 2017, Elkin, PODC 2017]. However, it is open whether a singularly (near) optimal bound can be obtained for the MST construction problem in general \emph{asynchronous} CONGEST networks. We present a randomized distributed MST algorithm that, with high probability, computes an MST in \emph{asynchronous} CONGEST networks and takes $\tilde{O}(D^{1+\epsilon} + \sqrt{n})$ time and $\tilde{O}(m)$ messages, where $n$ is the number of nodes, $m$ the number of edges, $D$ is the diameter of the network, and $\epsilon >0$ is an arbitrarily small constant (both time and message bounds hold with high probability). Our algorithm is message optimal (up to a polylog$(n)$ factor) and almost time optimal (except for a $D^{\epsilon}$ factor). Our result answers an open question raised in Mashregi and King [DISC 2019] by giving the first known asynchronous MST algorithm that has sublinear time (for all $D = O(n^{1-\epsilon})$) and uses $\tilde{O}(m)$ messages. Using a result of Mashregi and King [DISC 2019], this also yields the first asynchronous MST algorithm that is sublinear in both time and messages in the $KT_1$ CONGEST model. A key tool in our algorithm is the construction of a low diameter rooted spanning tree in asynchronous CONGEST that has depth $\tilde{O}(D^{1+\epsilon})$ (for an arbitrarily small constant $\epsilon > 0$) in $\tilde{O}(D^{1+\epsilon})$ time and $\tilde{O}(m)$ messages. To the best of our knowledge, this is the first such construction that is almost singularly optimal in the asynchronous setting.<br />Comment: 27 pages, accepted to DISC 2022
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2210.01173
- Document Type :
- Working Paper