Back to Search
Start Over
LOViS: Learning Orientation and Visual Signals for Vision and Language Navigation
- Publication Year :
- 2022
-
Abstract
- Understanding spatial and visual information is essential for a navigation agent who follows natural language instructions. The current Transformer-based VLN agents entangle the orientation and vision information, which limits the gain from the learning of each information source. In this paper, we design a neural agent with explicit Orientation and Vision modules. Those modules learn to ground spatial information and landmark mentions in the instructions to the visual environment more effectively. To strengthen the spatial reasoning and visual perception of the agent, we design specific pre-training tasks to feed and better utilize the corresponding modules in our final navigation model. We evaluate our approach on both Room2room (R2R) and Room4room (R4R) datasets and achieve the state of the art results on both benchmarks.
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2209.12723
- Document Type :
- Working Paper