Back to Search Start Over

Exponential Convergence of hp FEM for the Integral Fractional Laplacian in Polygons

Authors :
Faustmann, Markus
Marcati, Carlo
Melenk, Jens Markus
Schwab, Christoph
Source :
SIAM J. Numer. Anal.61(2023), no.6, 2601-2622
Publication Year :
2022

Abstract

We prove exponential convergence in the energy norm of $hp$ finite element discretizations for the integral fractional diffusion operator of order $2s\in (0,2)$ subject to homogeneous Dirichlet boundary conditions in bounded polygonal domains $\Omega\subset \mathbb{R}^2$. Key ingredient in the analysis are the weighted analytic regularity from our previous work and meshes that feature anisotropic geometric refinement towards $\partial\Omega$.

Subjects

Subjects :
Mathematics - Numerical Analysis

Details

Database :
arXiv
Journal :
SIAM J. Numer. Anal.61(2023), no.6, 2601-2622
Publication Type :
Report
Accession number :
edsarx.2209.11468
Document Type :
Working Paper
Full Text :
https://doi.org/10.1137/22M152493X