Back to Search
Start Over
Exponential Convergence of hp FEM for the Integral Fractional Laplacian in Polygons
- Source :
- SIAM J. Numer. Anal.61(2023), no.6, 2601-2622
- Publication Year :
- 2022
-
Abstract
- We prove exponential convergence in the energy norm of $hp$ finite element discretizations for the integral fractional diffusion operator of order $2s\in (0,2)$ subject to homogeneous Dirichlet boundary conditions in bounded polygonal domains $\Omega\subset \mathbb{R}^2$. Key ingredient in the analysis are the weighted analytic regularity from our previous work and meshes that feature anisotropic geometric refinement towards $\partial\Omega$.
- Subjects :
- Mathematics - Numerical Analysis
Subjects
Details
- Database :
- arXiv
- Journal :
- SIAM J. Numer. Anal.61(2023), no.6, 2601-2622
- Publication Type :
- Report
- Accession number :
- edsarx.2209.11468
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1137/22M152493X