Back to Search
Start Over
MA2QL: A Minimalist Approach to Fully Decentralized Multi-Agent Reinforcement Learning
- Publication Year :
- 2022
-
Abstract
- Decentralized learning has shown great promise for cooperative multi-agent reinforcement learning (MARL). However, non-stationarity remains a significant challenge in fully decentralized learning. In the paper, we tackle the non-stationarity problem in the simplest and fundamental way and propose multi-agent alternate Q-learning (MA2QL), where agents take turns updating their Q-functions by Q-learning. MA2QL is a minimalist approach to fully decentralized cooperative MARL but is theoretically grounded. We prove that when each agent guarantees $\varepsilon$-convergence at each turn, their joint policy converges to a Nash equilibrium. In practice, MA2QL only requires minimal changes to independent Q-learning (IQL). We empirically evaluate MA2QL on a variety of cooperative multi-agent tasks. Results show MA2QL consistently outperforms IQL, which verifies the effectiveness of MA2QL, despite such minimal changes.<br />Comment: 18 pages
- Subjects :
- Computer Science - Machine Learning
Computer Science - Multiagent Systems
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2209.08244
- Document Type :
- Working Paper