Back to Search
Start Over
Biderivations of low-dimensional Leibniz algebras
- Source :
- H. Albuquerque, J. Brox, C. Mart\'inez, P. Saraiva (eds.), Non-Associative Algebras and Related Topics. NAART 2020. Springer Proceedings in Mathematics & Statistics 427 (2023), no. 8, pp. 127-136. Springer, Cham
- Publication Year :
- 2022
-
Abstract
- In this paper we give a complete classification of the Leibniz algebras of biderivations of right Leibniz algebras of dimension up to three over a field $\mathbb{F}$, with $\operatorname{char}(\mathbb{F})\neq 2$. We describe the main properties of such class of Leibniz algebras and we also compute the biderivations of the four-dimensional Dieudonn\'e Leibniz algebra $\mathfrak{d}_1$. Eventually we give an algorithm for finding derivations and anti-derivations of a Leibniz algebra as pair of matrices with respect to a fixed basis.<br />Comment: Conference paper. Final version, accepted for publication
- Subjects :
- Mathematics - Rings and Algebras
15B30, 16W25, 17A32, 17A36, 17B40
Subjects
Details
- Database :
- arXiv
- Journal :
- H. Albuquerque, J. Brox, C. Mart\'inez, P. Saraiva (eds.), Non-Associative Algebras and Related Topics. NAART 2020. Springer Proceedings in Mathematics & Statistics 427 (2023), no. 8, pp. 127-136. Springer, Cham
- Publication Type :
- Report
- Accession number :
- edsarx.2209.07892
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1007/978-3-031-32707-0_8