Back to Search Start Over

Biderivations of low-dimensional Leibniz algebras

Authors :
Mancini, Manuel
Source :
H. Albuquerque, J. Brox, C. Mart\'inez, P. Saraiva (eds.), Non-Associative Algebras and Related Topics. NAART 2020. Springer Proceedings in Mathematics & Statistics 427 (2023), no. 8, pp. 127-136. Springer, Cham
Publication Year :
2022

Abstract

In this paper we give a complete classification of the Leibniz algebras of biderivations of right Leibniz algebras of dimension up to three over a field $\mathbb{F}$, with $\operatorname{char}(\mathbb{F})\neq 2$. We describe the main properties of such class of Leibniz algebras and we also compute the biderivations of the four-dimensional Dieudonn\'e Leibniz algebra $\mathfrak{d}_1$. Eventually we give an algorithm for finding derivations and anti-derivations of a Leibniz algebra as pair of matrices with respect to a fixed basis.<br />Comment: Conference paper. Final version, accepted for publication

Details

Database :
arXiv
Journal :
H. Albuquerque, J. Brox, C. Mart\'inez, P. Saraiva (eds.), Non-Associative Algebras and Related Topics. NAART 2020. Springer Proceedings in Mathematics & Statistics 427 (2023), no. 8, pp. 127-136. Springer, Cham
Publication Type :
Report
Accession number :
edsarx.2209.07892
Document Type :
Working Paper
Full Text :
https://doi.org/10.1007/978-3-031-32707-0_8