Back to Search Start Over

Self-organization phenomena in cold atmospheric pressure plasma slit jet

Authors :
Polášková, Kateřina
Nečas, David
Dostál, Lukáš
Klíma, Miloš
Fiala, Pavel
Zajíčková, Lenka
Publication Year :
2022

Abstract

The RF plasma slit jet, which produces 150 mm wide streaming plasma outside the jet body, exhibits exciting self-organization phenomena that resemble the self-organized patterns of dielectric barrier discharge (DBD) filaments. Similarly, as in DBD, the filaments are surrounded by an inhibition zone that does not allow two filaments to come closer to each other. With fast camera imaging, we observed the filamentary character of the discharge in all the studied gas feeds (Ar, Ar/N$_2$, and Ar/O$_2$). Still, the visual appearance of the filaments in the plasma and their interaction with a dielectric surface depended significantly on the gas feed. As the breakdown voltage in pure Ar is relatively low compared to the applied one, new filaments form frequently. Such newly created filaments disrupted the characteristic inter-filament distance, forcing the system to rearrange. The frequent ignition and decay processes in Ar led to short filament lifetimes (0.020-0.035 s) and their high jitter speed (0.9-1.7 m/s), as determined with an image processing custom code based on Gwyddion libraries. The number of filaments was lower in the Ar/O$_2$ and Ar/N$_2$ mixtures. It was attributed to a loss of energy in the excitation of rotational and vibrational levels and oxygen electronegativity. Since the probability of low-current side discharges transitioning into the full plasma filaments was limited in the gas mixtures, the self-organized pattern was seldom disrupted, leading to lesser movement and longer lifetimes. Unlike in Ar or Ar/O$_2$, the constricted filaments in Ar/N$_2$ were surrounded by diffuse plasma plumes, likely connected to the presence of long-lived nitrogen species. We demonstrated in the polypropylene treatment that the self-organization phenomena affected the treatment uniformity.<br />Comment: 19 pages, 11 figures, submitted to Plasma Sources Science and Technology

Subjects

Subjects :
Physics - Plasma Physics

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2209.05326
Document Type :
Working Paper
Full Text :
https://doi.org/10.1088/1361-6595/acab82