Back to Search
Start Over
Tunable itinerant spin dynamics with polar molecules
- Publication Year :
- 2022
-
Abstract
- Strongly interacting spins underlie many intriguing phenomena and applications ranging from magnetism to quantum information processing. Interacting spins combined with motion display exotic spin transport phenomena, such as superfluidity arising from pairing of spins induced by spin attraction. To understand these complex phenomena, an interacting spin system with high controllability is desired. Quantum spin dynamics have been studied on different platforms with varying capabilities. Here we demonstrate tunable itinerant spin dynamics enabled by dipolar interactions using a gas of potassium-rubidium molecules confined to two-dimensional planes, where a spin-1/2 system is encoded into the molecular rotational levels. The dipolar interaction gives rise to a shift of the rotational transition frequency and a collision-limited Ramsey contrast decay that emerges from the coupled spin and motion. Both the Ising and spin exchange interactions are precisely tuned by varying the strength and orientation of an electric field, as well as the internal molecular state. This full tunability enables both static and dynamical control of the spin Hamiltonian, allowing reversal of the coherent spin dynamics. Our work establishes an interacting spin platform that allows for exploration of many-body spin dynamics and spin-motion physics utilizing the strong, tunable dipolar interaction.<br />Comment: 22 pages, including 4 + 2 figures
- Subjects :
- Condensed Matter - Quantum Gases
Physics - Atomic Physics
Quantum Physics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2208.02216
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1038/s41586-022-05479-2