Back to Search Start Over

Point Primitive Transformer for Long-Term 4D Point Cloud Video Understanding

Authors :
Wen, Hao
Liu, Yunze
Huang, Jingwei
Duan, Bo
Yi, Li
Source :
ECCV2022
Publication Year :
2022

Abstract

This paper proposes a 4D backbone for long-term point cloud video understanding. A typical way to capture spatial-temporal context is using 4Dconv or transformer without hierarchy. However, those methods are neither effective nor efficient enough due to camera motion, scene changes, sampling patterns, and the complexity of 4D data. To address those issues, we leverage the primitive plane as a mid-level representation to capture the long-term spatial-temporal context in 4D point cloud videos and propose a novel hierarchical backbone named Point Primitive Transformer(PPTr), which is mainly composed of intra-primitive point transformers and primitive transformers. Extensive experiments show that PPTr outperforms the previous state of the arts on different tasks.

Details

Database :
arXiv
Journal :
ECCV2022
Publication Type :
Report
Accession number :
edsarx.2208.00281
Document Type :
Working Paper