Back to Search Start Over

Results on the Small Quasi-Kernel Conjecture

Authors :
Ai, Jiangdong
Gerke, Stefanie
Gutin, Gregory
Yeo, Anders
Zhou, Yacong
Publication Year :
2022

Abstract

A {\em quasi-kernel} of a digraph $D$ is an independent set $Q\subseteq V(D)$ such that for every vertex $v\in V(D)\backslash Q$, there exists a directed path with one or two arcs from $v$ to a vertex $u\in Q$. In 1974, Chv\'{a}tal and Lov\'{a}sz proved that every digraph has a quasi-kernel. In 1976, Erd\H{o}s and S\'zekely conjectured that every sink-free digraph $D=(V(D),A(D))$ has a quasi-kernel of size at most $|V(D)|/2$. In this paper, we give a new method to show that the conjecture holds for a generalization of anti-claw-free digraphs. For any sink-free one-way split digraph $D$ of order $n$, when $n\geq 3$, we show a stronger result that $D$ has a quasi-kernel of size at most $\frac{n+3}{2} - \sqrt{n}$, and the bound is sharp.<br />Comment: 14 pages

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2207.12157
Document Type :
Working Paper