Back to Search
Start Over
Summing Sneddon-Bessel series explicitly
- Publication Year :
- 2022
-
Abstract
- We sum in a close form the Sneddon-Bessel series \[ \sum_{m=1}^\infty \frac{J_\alpha(x j_{m,\nu})J_\beta(y j_{m,\nu})} {j_{m,\nu}^{2n+\alpha+\beta-2\nu+2} J_{\nu+1}(j_{m,\nu})^2}, \] where $0<x$, $0<y$, $x+y<2$, $n$ is an integer, $\alpha,\beta,\nu\in \mathbb{C}\setminus \{-1,-2,\dots \}$ with $2\operatorname{Re} \nu < 2n+1 + \operatorname{Re} \alpha + \operatorname{Re} \beta$ and $\{j_{m,\nu}\}_{m\geq 0}$ are the zeros of the Bessel function $J_\nu$ of order $\nu$. As an application we prove some extensions of the Kneser-Sommerfeld expansion.<br />Comment: 19 pages
- Subjects :
- Mathematics - Classical Analysis and ODEs
33C10, 33C20
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2207.08709
- Document Type :
- Working Paper