Back to Search Start Over

Summing Sneddon-Bessel series explicitly

Authors :
Durán, Antonio J.
Pérez, Mario
Varona, Juan L.
Publication Year :
2022

Abstract

We sum in a close form the Sneddon-Bessel series \[ \sum_{m=1}^\infty \frac{J_\alpha(x j_{m,\nu})J_\beta(y j_{m,\nu})} {j_{m,\nu}^{2n+\alpha+\beta-2\nu+2} J_{\nu+1}(j_{m,\nu})^2}, \] where $0<x$, $0<y$, $x+y<2$, $n$ is an integer, $\alpha,\beta,\nu\in \mathbb{C}\setminus \{-1,-2,\dots \}$ with $2\operatorname{Re} \nu < 2n+1 + \operatorname{Re} \alpha + \operatorname{Re} \beta$ and $\{j_{m,\nu}\}_{m\geq 0}$ are the zeros of the Bessel function $J_\nu$ of order $\nu$. As an application we prove some extensions of the Kneser-Sommerfeld expansion.<br />Comment: 19 pages

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2207.08709
Document Type :
Working Paper