Back to Search
Start Over
On the Laplacian spread of digraphs
- Publication Year :
- 2022
-
Abstract
- In this article, we extend the notion of the Laplacian spread to simple directed graphs (digraphs) using the restricted numerical range. First, we provide Laplacian spread values for several families of digraphs. Then, we prove sharp upper bounds on the Laplacian spread for all polygonal and balanced digraphs. In particular, we show that the validity of the Laplacian spread bound for balanced digraphs is equivalent to the Laplacian spread conjecture for simple undirected graphs, which was conjectured in 2011 and proven in 2021. Moreover, we prove an equivalent statement for weighted balanced digraphs with weights between $0$ and $1$. Finally, we state several open conjectures that are motivated by empirical data.
- Subjects :
- Mathematics - Combinatorics
05C20, 05C50, 15A18, 15A60, 52B20
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2206.15410
- Document Type :
- Working Paper