Back to Search
Start Over
The Complexity of Contracting Bipartite Graphs into Small Cycles
- Publication Year :
- 2022
-
Abstract
- For a positive integer $\ell \geq 3$, the $C_\ell$-Contractibility problem takes as input an undirected simple graph $G$ and determines whether $G$ can be transformed into a graph isomorphic to $C_\ell$ (the induced cycle on $\ell$ vertices) using only edge contractions. Brouwer and Veldman [JGT 1987] showed that $C_4$-Contractibility is NP-complete in general graphs. It is easy to verify that $C_3$-Contractibility is polynomial-time solvable. Dabrowski and Paulusma [IPL 2017] showed that $C_{\ell}$-Contractibility is \NP-complete\ on bipartite graphs for $\ell = 6$ and posed as open problems the status of the problem when $\ell$ is 4 or 5. In this paper, we show that both $C_5$-Contractibility and $C_4$-Contractibility are NP-complete on bipartite graphs.
- Subjects :
- Computer Science - Computational Complexity
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2206.07358
- Document Type :
- Working Paper