Back to Search
Start Over
Lagrangian-based methods in convex optimization: prediction-correction frameworks with ergodic convergence rates
- Publication Year :
- 2022
-
Abstract
- We study the convergence rates of the classical Lagrangian-based methods and their variants for solving convex optimization problems with equality constraints. We present a generalized prediction-correction framework to establish $O(1/K^2)$ ergodic convergence rates. Under the strongly convex assumption, based on the presented prediction-correction framework, some Lagrangian-based methods with $O(1/K^2)$ ergodic convergence rates are presented, such as the augmented Lagrangian method with the indefinite proximal term, the alternating direction method of multipliers (ADMM) with a larger step size up to $(1+\sqrt{5})/2$, the linearized ADMM with the indefinite proximal term, and the multi-block ADMM type method (under an alternative assumption that the gradient of one block is Lipschitz continuous).
- Subjects :
- Mathematics - Optimization and Control
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2206.05088
- Document Type :
- Working Paper