Back to Search Start Over

Differentiable solver for time-dependent deformation problems with contact

Authors :
Huang, Zizhou
Tozoni, Davi Colli
Gjoka, Arvi
Ferguson, Zachary
Schneider, Teseo
Panozzo, Daniele
Zorin, Denis
Source :
ACM Transactions on Graphics (2024), Volume 43, Issue 3, pp 1-30
Publication Year :
2022

Abstract

We introduce a general differentiable solver for time-dependent deformation problems with contact and friction. Our approach uses a finite element discretization with a high-order time integrator coupled with the recently proposed incremental potential contact method for handling contact and friction forces to solve ODE- and PDE-constrained optimization problems on scenes with complex geometry. It supports static and dynamic problems and differentiation with respect to all physical parameters involved in the physical problem description, which include shape, material parameters, friction parameters, and initial conditions. Our analytically derived adjoint formulation is efficient, with a small overhead (typically less than 10% for nonlinear problems) over the forward simulation, and shares many similarities with the forward problem, allowing the reuse of large parts of existing forward simulator code. We implement our approach on top of the open-source PolyFEM library and demonstrate the applicability of our solver to shape design, initial condition optimization, and material estimation on both simulated results and physical validations.

Subjects

Subjects :
Computer Science - Graphics

Details

Database :
arXiv
Journal :
ACM Transactions on Graphics (2024), Volume 43, Issue 3, pp 1-30
Publication Type :
Report
Accession number :
edsarx.2205.13643
Document Type :
Working Paper
Full Text :
https://doi.org/10.1145/3657648