Back to Search Start Over

Calibration of Natural Language Understanding Models with Venn--ABERS Predictors

Authors :
Giovannotti, Patrizio
Publication Year :
2022

Abstract

Transformers, currently the state-of-the-art in natural language understanding (NLU) tasks, are prone to generate uncalibrated predictions or extreme probabilities, making the process of taking different decisions based on their output relatively difficult. In this paper we propose to build several inductive Venn--ABERS predictors (IVAP), which are guaranteed to be well calibrated under minimal assumptions, based on a selection of pre-trained transformers. We test their performance over a set of diverse NLU tasks and show that they are capable of producing well-calibrated probabilistic predictions that are uniformly spread over the [0,1] interval -- all while retaining the original model's predictive accuracy.<br />Comment: Accepted at the 11th Symposium on Conformal and Probabilistic Prediction with Applications - COPA 2022

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2205.10586
Document Type :
Working Paper