Back to Search
Start Over
Temperature induced change of conformation of Sc2TbN@C80 on h-BN/Ni(111)
- Publication Year :
- 2022
-
Abstract
- The conformation of molecules on surfaces is decisive for their functionality. For the case of the endofullerene paramagnet Sc2TbN@C80 the conformation is linked to an electric and a magnetic dipole moment. Therefore a workfunction change of a substrate with adsorbed molecules, qualifies the system to be magnetoelectric. One monolayer of Sc2TbN@C80 has been studied on h-BN/Ni(111). The molecules assume a hexagonally close packed lattice aligned with the substrate high symmetry directions. The structure is incommensurate and arranges at a periodicity of about 4.3x4.3 substrate unit cells. At low temperatures a (2 x 2) superstructure is observed. Angular resolved valence band photoemission spectroscopy shows a temperature induced 0.3 eV shift on the C80 molecular orbitals to lower binding energies that is parallel to a workfunction increase. From comparison of the molecular orbital angular photoemission intensity distributions it is conjectured that the molecules undergo a change in conformation between 30 and 300 K. This phase transition is centred at 125 K as observed with high resolution x-ray photoelectron spectroscopy that shows the core levels of the atomic species on the molecules to shift parallel to the workfunction. The temperature dependence of the workfunction can be described with a two level model that accounts for the disordering with an excitation energy of 60 meV into a highly degenerate ensemble. The experimental findings are backed by density functional theory calculations for the diamagnetic sibling of Sc2TbN@C80 : Sc2YN@C80 that rationalize the incommensurate structure, show a permanent dipole moment of Sc2YN@C80 and a relation between the workfunction and the orientation of the endohedral cluster.<br />Comment: 7 pages 6 figures
- Subjects :
- Condensed Matter - Materials Science
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2205.07342
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1002/admi.202300935