Back to Search
Start Over
SSR-HEF: Crowd Counting with Multi-Scale Semantic Refining and Hard Example Focusing
- Source :
- IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS (2022.03)
- Publication Year :
- 2022
-
Abstract
- Crowd counting based on density maps is generally regarded as a regression task.Deep learning is used to learn the mapping between image content and crowd density distribution. Although great success has been achieved, some pedestrians far away from the camera are difficult to be detected. And the number of hard examples is often larger. Existing methods with simple Euclidean distance algorithm indiscriminately optimize the hard and easy examples so that the densities of hard examples are usually incorrectly predicted to be lower or even zero, which results in large counting errors. To address this problem, we are the first to propose the Hard Example Focusing(HEF) algorithm for the regression task of crowd counting. The HEF algorithm makes our model rapidly focus on hard examples by attenuating the contribution of easy examples.Then higher importance will be given to the hard examples with wrong estimations. Moreover, the scale variations in crowd scenes are large, and the scale annotations are labor-intensive and expensive. By proposing a multi-Scale Semantic Refining (SSR) strategy, lower layers of our model can break through the limitation of deep learning to capture semantic features of different scales to sufficiently deal with the scale variation. We perform extensive experiments on six benchmark datasets to verify the proposed method. Results indicate the superiority of our proposed method over the state-of-the-art methods. Moreover, our designed model is smaller and faster.<br />Comment: Accepted by IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS
Details
- Database :
- arXiv
- Journal :
- IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS (2022.03)
- Publication Type :
- Report
- Accession number :
- edsarx.2204.07406
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1109/TII.2022.3160634