Back to Search Start Over

Improved Approximations for Euclidean $k$-means and $k$-median, via Nested Quasi-Independent Sets

Authors :
Cohen-Addad, Vincent
Esfandiari, Hossein
Mirrokni, Vahab
Narayanan, Shyam
Publication Year :
2022

Abstract

Motivated by data analysis and machine learning applications, we consider the popular high-dimensional Euclidean $k$-median and $k$-means problems. We propose a new primal-dual algorithm, inspired by the classic algorithm of Jain and Vazirani and the recent algorithm of Ahmadian, Norouzi-Fard, Svensson, and Ward. Our algorithm achieves an approximation ratio of $2.406$ and $5.912$ for Euclidean $k$-median and $k$-means, respectively, improving upon the 2.633 approximation ratio of Ahmadian et al. and the 6.1291 approximation ratio of Grandoni, Ostrovsky, Rabani, Schulman, and Venkat. Our techniques involve a much stronger exploitation of the Euclidean metric than previous work on Euclidean clustering. In addition, we introduce a new method of removing excess centers using a variant of independent sets over graphs that we dub a "nested quasi-independent set". In turn, this technique may be of interest for other optimization problems in Euclidean and $\ell_p$ metric spaces.<br />Comment: 74 pages. To appear in Symposium on Theory of Computing (STOC), 2022

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2204.04828
Document Type :
Working Paper