Back to Search
Start Over
Electron Weibel instability induced magnetic fields in optical-field ionized plasmas
- Publication Year :
- 2022
-
Abstract
- Generation and amplification of magnetic fields in plasmas is a long-standing topic that is of great interest to both plasma and space physics. The electron Weibel instability is a well-known mechanism responsible for self-generating magnetic fields in plasmas with temperature anisotropy and has been extensively investigated in both theory and simulations, yet experimental verification of this instability has been challenging. Recently, we demonstrated a new experimental platform that enables the controlled initialization of highly nonthermal and/or anisotropic plasma electron velocity distributions via optical-field ionization. Using an external electron probe bunch from a linear accelerator, the onset, saturation and decay of the self-generated magnetic fields due to electron Weibel instability were measured for the first time to our knowledge. In this paper, we will first present experimental results on time-resolved measurements of the Weibel magnetic fields in non-relativistic plasmas produced by Ti:Sapphire laser pulses (0.8 $\mu m$) and then discuss the feasibility of extending the study to quasi-relativistic regime by using intense $\rm CO_2$ (e.g., 9.2 $\mu m$) lasers to produce much hotter plasmas.<br />Comment: 22 pages, 10 figures
- Subjects :
- Physics - Plasma Physics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2204.04262
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1063/5.0089814