Back to Search
Start Over
When does a hypergeometric function ${}_{p\!}F_q$ belong to the Laguerre--P\'olya class $LP^+$?
- Source :
- J. Math. Anal. Appl. 515, 126432 (2022)
- Publication Year :
- 2022
-
Abstract
- I show that a hypergeometric function ${}_{p}F_q(a_1,\ldots,a_p;b_1,\ldots,b_q;\,\cdot\,)$ with $p \le q$ belongs to the Laguerre--P\'olya class $LP^+$ for arbitrarily large $b_{p+1},\ldots,b_q > 0$ if and only if, after a possible reordering, the differences $a_i - b_i$ are nonnegative integers. This result arises as an easy corollary of the case $p=q$ proven two decades ago by Ki and Kim. I also give explicit examples for the case ${}_{1}F_2$.<br />Comment: 10 pages, LaTeX2e
Details
- Database :
- arXiv
- Journal :
- J. Math. Anal. Appl. 515, 126432 (2022)
- Publication Type :
- Report
- Accession number :
- edsarx.2204.01045
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1016/j.jmaa.2022.126432