Back to Search Start Over

When does a hypergeometric function ${}_{p\!}F_q$ belong to the Laguerre--P\'olya class $LP^+$?

Authors :
Sokal, Alan D.
Source :
J. Math. Anal. Appl. 515, 126432 (2022)
Publication Year :
2022

Abstract

I show that a hypergeometric function ${}_{p}F_q(a_1,\ldots,a_p;b_1,\ldots,b_q;\,\cdot\,)$ with $p \le q$ belongs to the Laguerre--P\'olya class $LP^+$ for arbitrarily large $b_{p+1},\ldots,b_q > 0$ if and only if, after a possible reordering, the differences $a_i - b_i$ are nonnegative integers. This result arises as an easy corollary of the case $p=q$ proven two decades ago by Ki and Kim. I also give explicit examples for the case ${}_{1}F_2$.<br />Comment: 10 pages, LaTeX2e

Details

Database :
arXiv
Journal :
J. Math. Anal. Appl. 515, 126432 (2022)
Publication Type :
Report
Accession number :
edsarx.2204.01045
Document Type :
Working Paper
Full Text :
https://doi.org/10.1016/j.jmaa.2022.126432