Back to Search Start Over

On the Role of Quantization of Soft Information in GRAND

Authors :
Yuan, Peihong
Duffy, Ken R.
Gabhart, Evan P.
Médard, Muriel
Publication Year :
2022

Abstract

In this work, we investigate guessing random additive noise decoding (GRAND) with quantized soft input. First, we analyze the achievable rate of ordered reliability bits GRAND (ORBGRAND), which uses the rank order of the reliability as quantized soft information. We show that multi-line ORBGRAND can approach capacity for any signal-to-noise ratio (SNR). We then introduce discretized soft GRAND (DSGRAND), which uses information from a conventional quantizer. Simulation results show that DSGRAND well approximates maximum-likelihood (ML) decoding with a number of quantization bits that is in line with current soft decoding implementations. For a (128,106) CRC-concatenated polar code, the basic ORBGRAND is able to match or outperform CRC-aided successive cancellation list (CA-SCL) decoding with codeword list size of 64 and 3 bits of quantized soft information, while DSGRAND outperforms CA-SCL decoding with a list size of 128 codewords. Both ORBGRAND and DSGRAND exhibit approximately an order of magnitude less average complexity and two orders of magnitude smaller memory requirements than CA-SCL.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2203.13552
Document Type :
Working Paper