Back to Search Start Over

Primordial helium-3 redux: The helium isotope ratio of the Orion nebula

Authors :
Cooke, Ryan J.
Noterdaeme, Pasquier
Johnson, James W.
Pettini, Max
Welsh, Louise
Peroux, Celine
Murphy, Michael T.
Weinberg, David H.
Publication Year :
2022

Abstract

We report the first direct measurement of the helium isotope ratio, 3He/4He, outside of the Local Interstellar Cloud, as part of science verification observations with the upgraded CRyogenic InfraRed Echelle Spectrograph (CRIRES). Our determination of 3He/4He is based on metastable HeI* absorption along the line-of-sight towards Tet02 Ori A in the Orion Nebula. We measure a value 3He/4He=(1.77+/-0.13)x10^{-4}, which is just ~40 per cent above the primordial relative abundance of these isotopes, assuming the Standard Model of particle physics and cosmology, (3He/4He)_p = (1.257+/-0.017)x10^-4. We calculate a suite of galactic chemical evolution simulations to study the Galactic build up of these isotopes, using the yields from Limongi & Chieffi (2018) for stars in the mass range M=8-100 M_sun and Lagarde (2011,2012) for M=0.8-8 M_sun. We find that these simulations simultaneously reproduce the Orion and protosolar 3He/4He values if the calculations are initialized with a primordial ratio (3He/4He)_p=(1.043+/-0.089)x10^-4. Even though the quoted error does not include the model uncertainty, this determination agrees with the Standard Model value to within ~2sigma. We also use the present-day Galactic abundance of deuterium (D/H), helium (He/H), and 3He/4He to infer an empirical limit on the primordial 3He abundance, (3He/H)_p < (1.09+/-0.18)x10^-5, which also agrees with the Standard Model value. We point out that it is becoming increasingly difficult to explain the discrepant primordial 7Li/H abundance with non-standard physics, without breaking the remarkable simultaneous agreement of three primordial element ratios (D/H, 4He/H, and 3He/4He) with the Standard Model values.<br />Comment: 23 pages, 9 figures, Resubmitted to the Astrophysical Journal after addressing referee comments

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2203.11256
Document Type :
Working Paper
Full Text :
https://doi.org/10.3847/1538-4357/ac6503