Back to Search Start Over

Inverse Scale Space Iterations for Non-Convex Variational Problems: The Continuous and Discrete Case

Authors :
Bednarski, Danielle
Lellmann, Jan
Publication Year :
2022

Abstract

Non-linear filtering approaches allow to obtain decompositions of images with respect to a non-classical notion of scale, induced by the choice of a convex, absolutely one-homogeneous regularizer. The associated inverse scale space flow can be obtained using the classical Bregman iteration with quadratic data term. We apply the Bregman iteration to lifted, i.e. higher-dimensional and convex, functionals in order to extend the scope of these approaches to functionals with arbitrary data term. We provide conditions for the subgradients of the regularizer -- in the continuous and discrete setting -- under which this lifted iteration reduces to the standard Bregman iteration. We show experimental results for the convex and non-convex case.<br />Comment: 15 pages, 6 figures, submitted for JMIV special issue. arXiv admin note: substantial text overlap with arXiv:2105.02622

Subjects

Subjects :
Mathematics - Numerical Analysis

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2203.10865
Document Type :
Working Paper