Back to Search Start Over

The Best of Both Worlds: Combining Learned Embeddings with Engineered Features for Accurate Prediction of Correct Patches

Authors :
Tian, Haoye
Liu, Kui
Li, Yinghua
Kaboré, Abdoul Kader
Koyuncu, Anil
Habib, Andrew
Li, Li
Wen, Junhao
Klein, Jacques
Bissyandé, Tegawendé F.
Publication Year :
2022

Abstract

A large body of the literature on automated program repair develops approaches where patches are automatically generated to be validated against an oracle (e.g., a test suite). Because such an oracle can be imperfect, the generated patches, although validated by the oracle, may actually be incorrect. Our empirical work investigates different representation learning approaches for code changes to derive embeddings that are amenable to similarity computations of patch correctness identification, and assess the possibility of accurate classification of correct patch by combining learned embeddings with engineered features. Experimental results demonstrate the potential of learned embeddings to empower Leopard (a patch correctness predicting framework implemented in this work) with learning algorithms in reasoning about patch correctness: a machine learning predictor with BERT transformer-based learned embeddings associated with XGBoost achieves an AUC value of about 0.803 in the prediction of patch correctness on a new dataset of 2,147 labeled patches that we collected for the experiments. Our investigations show that deep learned embeddings can lead to complementary/better performance when comparing against the state-of-the-art, PATCH-SIM, which relies on dynamic information. By combining deep learned embeddings and engineered features, Panther (the upgraded version of Leopard implemented in this work) outperforms Leopard with higher scores in terms of AUC, +Recall and -Recall, and can accurately identify more (in)correct patches that cannot be predicted by the classifiers only with learned embeddings or engineered features. Finally, we use an explainable ML technique, SHAP, to empirically interpret how the learned embeddings and engineered features are contributed to the patch correctness prediction.<br />Comment: arXiv admin note: substantial text overlap with arXiv:2008.02944

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2203.08912
Document Type :
Working Paper