Back to Search
Start Over
Deepchecks: A Library for Testing and Validating Machine Learning Models and Data
- Publication Year :
- 2022
-
Abstract
- This paper presents Deepchecks, a Python library for comprehensively validating machine learning models and data. Our goal is to provide an easy-to-use library comprising of many checks related to various types of issues, such as model predictive performance, data integrity, data distribution mismatches, and more. The package is distributed under the GNU Affero General Public License (AGPL) and relies on core libraries from the scientific Python ecosystem: scikit-learn, PyTorch, NumPy, pandas, and SciPy. Source code, documentation, examples, and an extensive user guide can be found at \url{https://github.com/deepchecks/deepchecks} and \url{https://docs.deepchecks.com/}.
- Subjects :
- Computer Science - Machine Learning
Computer Science - Software Engineering
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2203.08491
- Document Type :
- Working Paper