Back to Search
Start Over
A Neural Programming Language for the Reservoir Computer
- Publication Year :
- 2022
-
Abstract
- From logical reasoning to mental simulation, biological and artificial neural systems possess an incredible capacity for computation. Such neural computers offer a fundamentally novel computing paradigm by representing data continuously and processing information in a natively parallel and distributed manner. To harness this computation, prior work has developed extensive training techniques to understand existing neural networks. However, the lack of a concrete and low-level programming language for neural networks precludes us from taking full advantage of a neural computing framework. Here, we provide such a programming language using reservoir computing -- a simple recurrent neural network -- and close the gap between how we conceptualize and implement neural computers and silicon computers. By decomposing the reservoir's internal representation and dynamics into a symbolic basis of its inputs, we define a low-level neural machine code that we use to program the reservoir to solve complex equations and store chaotic dynamical systems as random access memory (dRAM). Using this representation, we provide a fully distributed neural implementation of software virtualization and logical circuits, and even program a playable game of pong inside of a reservoir computer. Taken together, we define a concrete, practical, and fully generalizable implementation of neural computation.<br />Comment: 13 pages, 6 figures, with a supplement
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2203.05032
- Document Type :
- Working Paper