Back to Search
Start Over
Self-Supervised Face Image Restoration with a One-Shot Reference
- Publication Year :
- 2022
-
Abstract
- For image restoration, methods leveraging priors from generative models have been proposed and demonstrated a promising capacity to robustly restore photorealistic and high-quality results. However, these methods are susceptible to semantic ambiguity, particularly with images that have obviously correct semantics such as facial images. In this paper, we propose a semantic-aware latent space exploration method for image restoration (SAIR). By explicitly modeling semantics information from a given reference image, SAIR is able to reliably restore severely degraded images not only to high-resolution and highly realistic looks but also to correct semantics. Quantitative and qualitative experiments collectively demonstrate the superior performance of the proposed SAIR. Our code is available at https://github.com/Liamkuo/SAIR.<br />Comment: Accepted by ICASSP 2024
- Subjects :
- Computer Science - Computer Vision and Pattern Recognition
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2203.03005
- Document Type :
- Working Paper