Back to Search Start Over

Provable and Efficient Continual Representation Learning

Authors :
Li, Yingcong
Li, Mingchen
Asif, M. Salman
Oymak, Samet
Publication Year :
2022

Abstract

In continual learning (CL), the goal is to design models that can learn a sequence of tasks without catastrophic forgetting. While there is a rich set of techniques for CL, relatively little understanding exists on how representations built by previous tasks benefit new tasks that are added to the network. To address this, we study the problem of continual representation learning (CRL) where we learn an evolving representation as new tasks arrive. Focusing on zero-forgetting methods where tasks are embedded in subnetworks (e.g., PackNet), we first provide experiments demonstrating CRL can significantly boost sample efficiency when learning new tasks. To explain this, we establish theoretical guarantees for CRL by providing sample complexity and generalization error bounds for new tasks by formalizing the statistical benefits of previously-learned representations. Our analysis and experiments also highlight the importance of the order in which we learn the tasks. Specifically, we show that CL benefits if the initial tasks have large sample size and high "representation diversity". Diversity ensures that adding new tasks incurs small representation mismatch and can be learned with few samples while training only few additional nonzero weights. Finally, we ask whether one can ensure each task subnetwork to be efficient during inference time while retaining the benefits of representation learning. To this end, we propose an inference-efficient variation of PackNet called Efficient Sparse PackNet (ESPN) which employs joint channel & weight pruning. ESPN embeds tasks in channel-sparse subnets requiring up to 80% less FLOPs to compute while approximately retaining accuracy and is very competitive with a variety of baselines. In summary, this work takes a step towards data and compute-efficient CL with a representation learning perspective. GitHub page: https://github.com/ucr-optml/CtRL

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2203.02026
Document Type :
Working Paper