Back to Search Start Over

Experimental identification of the second-order non-Hermitian skin effect with physics-graph-informed machine learning

Authors :
Shang, Ce
Liu, Shuo
Shao, Ruiwen
Han, Peng
Zang, Xiaoning
Zhang, Xiangliang
Salama, Khaled Nabil
Gao, Wenlong
Lee, Ching Hua
Thomale, Ronny
Manchon, Aurelien
Zhang, Shuang
Cui, Tie Jun
Schwingenschlogl, Udo
Publication Year :
2022

Abstract

Topological phases of matter are conventionally characterized by the bulk-boundary correspondence in Hermitian systems: The topological invariant of the bulk in $d$ dimensions corresponds to the number of $(d-1)$-dimensional boundary states. By extension, higher-order topological insulators reveal a bulk-edge-corner correspondence, such that $n$-th order topological phases feature $(d-n)$-dimensional boundary states. The advent of non-Hermitian topological systems sheds new light on the emergence of the non-Hermitian skin effect (NHSE) with an extensive number of boundary modes under open boundary conditions. Still, the higher-order NHSE remains largely unexplored, particularly in the experiment. We introduce an unsupervised approach -- physics-graph-informed machine learning (PGIML) -- to enhance the data mining ability of machine learning with limited domain knowledge. Through PGIML, we experimentally demonstrate the second-order NHSE in a two-dimensional non-Hermitian topolectrical circuit. The admittance spectra of the circuit exhibit an extensive number of corner skin modes and extreme sensitivity of the spectral flow to the boundary conditions. The violation of the conventional bulk-boundary correspondence in the second-order NHSE implies that modification of the topological band theory is inevitable in higher dimensional non-Hermitian systems.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2203.00484
Document Type :
Working Paper
Full Text :
https://doi.org/10.1002/advs.202202922