Back to Search Start Over

Probing quantum devices with radio-frequency reflectometry

Authors :
Vigneau, Florian
Fedele, Federico
Chatterjee, Anasua
Reilly, David
Kuemmeth, Ferdinand
Gonzalez-Zalba, Fernando
Laird, Edward
Ares, Natalia
Source :
Applied Physics Reviews 10, 021305 (2023)
Publication Year :
2022

Abstract

Many important phenomena in quantum devices are dynamic, meaning that they cannot be studied using time-averaged measurements alone. Experiments that measure such transient effects are collectively known as fast readout. One of the most useful techniques in fast electrical readout is radio-frequency reflectometry, which can measure changes in impedance (both resistive and reactive) even when their duration is extremely short, down to a microsecond or less. Examples of reflectometry experiments, some of which have been realised and others so far only proposed, include projective measurements of qubits and Majorana devices for quantum computing, real-time measurements of mechanical motion and detection of non-equilibrium temperature fluctuations. However, all of these experiments must overcome the central challenge of fast readout: the large mismatch between the typical impedance of quantum devices (set by the resistance quantum) and of transmission lines (set by the impedance of free space). Here, we review the physical principles of radio-frequency reflectometry and its close cousins, measurements of radio-frequency transmission and emission. We explain how to optimise the speed and sensitivity of a radio-frequency measurement, and how to incorporate new tools such as superconducting circuit elements and quantum-limited amplifiers into advanced radio-frequency experiments. Our aim is three-fold: to introduce the readers to the technique, to review the advances to date and to motivate new experiments in fast quantum device dynamics. Our intended audience includes experimentalists in the field of quantum electronics who want to implement radio-frequency experiments or improve them, together with physicists in related fields who want to understand how the most important radio-frequency measurements work.<br />Comment: Review paper. 64 pages main text, 15 pages supplementary. 47 figures in main text, 5 in the supplementary

Details

Database :
arXiv
Journal :
Applied Physics Reviews 10, 021305 (2023)
Publication Type :
Report
Accession number :
edsarx.2202.10516
Document Type :
Working Paper
Full Text :
https://doi.org/10.1063/5.0088229