Back to Search
Start Over
MANet: Improving Video Denoising with a Multi-Alignment Network
- Publication Year :
- 2022
-
Abstract
- In video denoising, the adjacent frames often provide very useful information, but accurate alignment is needed before such information can be harnassed. In this work, we present a multi-alignment network, which generates multiple flow proposals followed by attention-based averaging. It serves to mimic the non-local mechanism, suppressing noise by averaging multiple observations. Our approach can be applied to various state-of-the-art models that are based on flow estimation. Experiments on a large-scale video dataset demonstrate that our method improves the denoising baseline model by 0.2dB, and further reduces the parameters by 47% with model distillation. Code is available at https://github.com/IndigoPurple/MANet.<br />Comment: 5 pages, 5 figures
- Subjects :
- Computer Science - Computer Vision and Pattern Recognition
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2202.09704
- Document Type :
- Working Paper